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Dynamical phase diagram of a metamagnetic model subject to an oscillating magnetic field

M. Santos and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900, Floriano´polis, SC, Brazil

~Received 19 August 1998!

We investigated the dynamical behavior of an Ising model in a square lattice subject to a time-dependent
external magnetic field. In our model the exchange coupling between first neighboring spins in the horizontal
direction is different from that of the vertical direction. We have employed the master equation approach for
the Glauber stochastic process and used the dynamical pair approximation in order to decouple the hierarchy
of equations. We have found the stationary phase diagram for this model in the plane amplitude of the
oscillating field versus temperature, for different values of the frequency of the external field and of the ratio
between the vertical and the horizontal couplings. Depending on these values, the phase diagram can exhibit
the ferromagnetic, paramagnetic, and antiferromagnetic phases. The transition between these phases can be
continuous or discontinuous, and the model may also display a tricritical behavior.@S1063-651X~99!01504-4#

PACS number~s!: 64.10.1h, 64.60.Ht
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The structure of the phase diagram of a ferromagn
Ising system is completely modified when an external m
netic field is applied to the system. In fact, when the m
netic field is zero the ferromagnetic Ising model in two d
mensions undergoes a continuous phase transition betw
the ordered and disordered phases at a well defined cri
temperature@1#. However, the application of a uniform an
constant magnetic field to the system destroys the phase
sition and only one phase becomes stable. On the other h
if the magnetic field is sinusoidally varying in time the sy
tem again exhibits a phase transition between the ferrom
netic and paramagnetic phases@2#. Besides, the transition
can be continuous or discontinuous depending on the va
of the temperature and of the amplitude of the oscillat
field. The point connecting the continuous and discontinu
lines is known as the dynamical tricritical point.

However, if the spins of the system are coupled by
antiferromagnetic exchange interaction, the phase transit
are always continuous for both static and varying magn
fields @3#. In fact, this behavior is observed for small valu
of the competition between the frequencies of the field a
that of spin flipping in the heat bath. Only at very high fr
quencies of the field does the system remain in a station
antiferromagnetic state, that is, the transition to the dis
dered state does not occur.

In this work we have studied an Ising model in the squ
lattice subject to an oscillating magnetic field. We have tak
into account that the exchange interaction between
neighboring spins depends on the direction of the given c
pling. In our model the coupling in the horizontal directio
has the valueJ1 while its value in the vertical direction is
taken asJ2 . Depending on the values of the ratior 5J2 /J1
we have obtained, through the master equation formal
and dynamical pair approximation, continuous and first-or
phase transitions. The phase diagram that we have foun
this pair approximation for the ferromagnetic case (r ,0) is
very similar to the mean-field one found by Tome´ and de
Oliveira @2#. On the other hand, when there is a competit
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between the horizontal and vertical couplings, the topolo
of the phase diagram exhibits strong dependence on the
ues ofr .0, that is, for small values ofr this metamagnetic
model displays continuous and discontinuous phase tra
tions, while for large values ofr only continuous transitions
are possible.

Let us start with the following Hamiltonian model:

H52(
i , j

s i , j@J1s i 11,j2J2s i , j 111H~ t !#, ~1!

wheres i , j561 are the spin variables andH(t)5H0 coswt
is the magnetic field which is periodically varying in tim
with frequencyw and amplitudeH0 . If this spin system is
put in contact with a heat reservoir at temperatureT, the spin
variabless i , j can be considered as stochastic functions
time. The probabilityP(s,t) of finding the system in the
states5(s1,1, . . . ,s i , j , . . . ,sN,N) at timet is given by the
solution of the following master equation@4#:

d

dt
P~s,t !52(

i , j
wi , j~s!P~s,t !1(

i , j
wi , j~s i , j !P~s i , j ,t !,

~2!

where wi , j (s) is the transition probability, per unit time
from the states to the states i , j when we flip only the spin
at site (i , j ). Therefore, if the system evolves according
the Glauber prescription@5#, the transition probability, per
unit time, of flipping the spin at the position (i , j ) of the
lattice at timet can be given by

wi , j~s!5
1

2tF12s i , j tanhS 1

kBT
@J1~s i 21,j1s i 11,j !

2J2~s i , j 211s i , j 11!1H~ t !# D G , ~3!

where kB is Boltzmann’s constant andt is the relaxation
time for a single spin.

From the master equation it is possible to show that
average value of any functiong(s) can be calculated by the
following equation:
3888 ©1999 The American Physical Society
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d^g~s!&
dt

5(
i , j

^@g~s i , j !2g~s!#wi , j~s!&. ~4!

Wheng(s)5s i , j the equation of motion for the magnetiz
tion depends on the correlation function between near
neighbor pairs of spins. However, if we write the equation
motion for the pair correlation function, new correlations
higher order also appear. In order to decouple this se
equations we have used the dynamical pair approxima
@6,7#. In this way, we obtain a closed set of nonlinear eq
tions which give us the magnetization and the pair corre
tion functions of interest. Although this procedure is not u
ful for finding the critical exponents, because they are
mean-field type, it improves the mean-field results conce
ing the determination of the phase diagram, even though
expressions are more complex than the corresponding m
field ones. For instance, in a recent work@8# we have em-
ployed this approximation to find the phase diagram o
layered metamagnetic model in a constant field. We h
shown that there is no evidence for the decomposition of
tricritical point into the critical and bicritical endpoints a
predicted by the mean-field calculations@9#. The absence o
these special points is in agreement with experimental res
@10# and with Monte Carlo simulations performed in a r
lated metamagnetic model@11#. When the parameterr ,0,
ferromagnetic case, it is necessary to consider only th
different equations of motion: one for the evolution of t
magnetization and two others for the evolution of the verti
and horizontal pair correlation functions. In the case of co
petition r .0, we consider a layered metamagnetic mod
where we divide the square lattice into two alternating s
lattices 1 and 2 with magnetizationsm1 and m2 , respec-
tively. Moreover, we need to define three different types
correlation functions: the intersublattice correlation functi
r v , that represents the correlation between nearest-neig
spins in the vertical direction, and the intrasublattice cor
lation functionsr hi , which account for the horizontal corre
lation function in each sublattice,i 51,2. In order to evaluate
the mean value on the right-hand side of Eq.~4! we write, in
the pair approximation, the weighted probability as the pr
uct of the probabilities of pairs of spins belonging to a giv
cluster of spins. Then, takingsa as a central spin on th
t-
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sublatticea surrounded by its first neighbors, the approx
mated expression for the probability of this cluster is writt
as

Pa~sa!)
j

Pv~sa ,s j !

Pa~sa! )
i

Pha~sa ,s i !

Pa~sa!
, ~5!

where Pa(sa)5 1
2 (11masa) is the probability of the spin

sa to assume the valuesa . Pv(sa ,sb)5 1
4 (11m1sa

1m2sb1r vsasb) is the pair probability for the spinsa , on
the sublattice 1, andsb , on the sublattice 2, to assume th
valuessa andsb , respectively. Analogously, we also defin
the pair probabilities Phi(sa ,sb)5 1

4 (11misa1misb
1r hisasb) for pairs of first neighbor spins (sa ,sb) on the
same sublatticei. Defining the following auxiliary quantities

x1,25
1

2
~11m1,2!,

y1,25
1

2
~12m1,2!,

v1,25
1

4
~16m17m22r v!,

u1,25
1

4
~162m11r h1!,

t1,25
1

4
~162m21r h2!,

z15
1

4
~11m11m21r v!,

w15
1

4
~12m12m21r v!,

q1,25
1

4
~12r h1,h2!,

we can write the equations of motion of interest:
V
d

dj
m152m11g1S u1

2z1
2

x1
3 1

q1
2v2

2

y1
3 D 12g2S u1

2z1v1

x1
3 1

q1
2w1v2

y1
3 D 12g3S q1u1z1

2

x1
3 1

q1u2v2
2

y1
3 D 14g4S q1u1v1z1

x1
3 1

u2q1v2w1

y1
3 D

1g5S q1
2z1

2

x1
3 1

u2
2v2

2

y1
3 D 1g6S u1

2v1
2

x1
3 1

q1
2w1

2

y1
3 D 12g7S u1v1

2q1

x1
3 1

q1u2w1
2

y1
3 D 12g8S q1

2z1v1

x1
3 1

u2
2w1v2

y1
3 D

1g9S q1
2v1

2

x1
3 1

u2
2w1

2

y1
3 D , ~6!

V
d

dj
m252m21g1S t1

2z1
2

x2
3 1

q2
2v1

2

y2
3 D 12g2S t1

2z1v2

x2
3 1

q2
2w1v1

y1
3 D 12g3S q2t1z1

2

x2
3 1

q2t2v1
2

y2
3 D 14g4S q2t1v2z1

x2
3 1

t2q2v1w1

y2
3 D

1g5S q2
2z1

2

x2
3 1

t2
2v1

2

y2
3 D 1g6S t1

2v2
2

x2
3 1

q2
2w1

2

y2
3 D 12g7S t1v2

2q2

x2
3 1

q2t2w1
2

y2
3 D 12g8S q2

2z1v2

x2
3 1

t2
2w1v1

y2
3 D 1g9S q2

2v2
2

x2
3 1

t2
2w1

2

y2
3 D ,

~7!



3890 PRE 59M. SANTOS AND W. FIGUEIREDO
V
d

dj
r h1522r h112g1S u1

2z1
2

x1
3 1

q1
2v2

2

y1
3 D 14g2S u1

2v1z1

x1
3 1

q1
2v2w1

y1
3 D 22g5S q1

2z1
2

x1
3 1

u2
2v2

2

y1
3 D 12g6S u1

2v1
2

x1
3 1

q1
2w1

2

y1
3 D

24g8S q1
2z1v1

x1
3 1

u2
2v2w1

y1
3 D 22g9S q1

2v1
2

x1
3 1

w1
2u2

2

y1
3 D , ~8!

V
d

dj
r h2522r h212g1S t1

2z1
2

x2
3 1

q2
2v1

2

y2
3 D 14g2S t1

2v2z1

x2
3 1

q2
2v1w1

y2
3 D 22g5S q2

2z1
2

x2
3 1

t2
2v1

2

y2
3 D 12g6S t1

2v2
2

x2
3 1

q2
2w1

2

y2
3 D

24g8S q2
2z1v2

x2
3 1

t2
2v1w1

y2
3 D 22g9S q2

2v2
2

x2
3 1

w1
2t2

2

y2
3 D , ~9!

V
d

dj
r v522r v1g1S u1

2z1
2

x1
3 1

q1
2v2

2

y1
3 1

t1
2z1

2

x2
3 1

q2
2v1

2

y2
3 D 12g3S u1q1z1

2

x1
3 1

q1u2v2
2

y1
3 1

t1q2z1
2

x2
3 1

q2t2v1
2

y2
3 D

1g5S q1
2z1

2

x1
3 1

u2
2v2

2

y1
3 1

q2
2z1

2

x2
3 1

t2
2v1

2

y2
3 D 2g6S u1

2v1
2

x1
3 1

q1
2w1

2

y1
3 1

t1
2v2

2

x2
3 1

q2
2w1

2

y2
3 D

22g7S u1q1v1
2

x1
3 1

q1u2w1
2

y1
3 1

t1q2v2
2

x2
3 1

q2t2w1
2

y2
3 D 2g9S q1

2v1
2

x1
3 1

u2
2w1

2

y1
3 1

q2
2v2

2

x2
3 1

t2
2w1

2

y2
3 D , ~10!
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g1,95tanhH 1

u
@6262r 1h~j!#J ,

g2,85tanhH 1

u
@621h~j!#J ,

g3,75tanhH 1

u
@62r 1h~j!#J ,

g45tanhS h~j!

u D ,

g5,65tanhH 1

u
@7262r 1h~j!#J .

We have also defined the following reduced variablesu
5kBT/J1 , r 5J2 /J1 , h5h0 cosj, V5wt, j5wt, and h0
5H0 /J1 . In order to characterize the ferromagnetic and
tiferromagnetic states we have defined the order parame
mf5(m11m2)/2 andma5(m12m2)/2, respectively.

We have shown that forH050, the phase diagram of thi
model in the plane temperature versusr exhibits the ferro-
magnetic, antiferromagnetic, and paramagnetic phases@12#.
On the other hand, for a constant magnetic field andr .0,
the phase diagram in the plane (h0 ,u) displays a tricritical
point @8# for any value of the competing ratior.

Here we are interested in the behavior of the model w
the magnetic fieldH is varying sinusoidally in time. In this
case, we look for the nonequilibrium stationary states of
system. The set of Eqs.~6!–~10! is solved numerically by
using the Runge-Kutta method of fourth order for fixed v
ues ofu, r .0, andV. Depending on the value assumed
h0 , the antiferromagnetic order parameterma can oscillate
-
ers

n

e

-

around a given nonzero mean value or it becomes zero.
in any case the ferromagnetic order parametermf always
oscillates around a zero mean value. When the value ofma is
identical to zero anytime, the sublattice magnetizationsm1
andm2 are the same time functions. In this case the solut
is called symmetric or paramagnetic. It occurs for high v
ues of both temperature and amplitude of oscillating fie
For lower values of the amplitudeh0 , the symmetric solu-
tion becomes unstable and a new behavior is observed.
solutionma oscillates, and its mean value during a period
oscillation of the magnetic field is different from zero. Th
is the so-called antiferromagnetic or nonsymmetric soluti
It is interesting to define a dynamical order parameter
systems subject to external periodic forces, as being
mean value of their corresponding instantaneous values
a cycle of oscillation. In this way, for the dynamical ferro
magnetic and antiferromagnetic order parametersM f and
Ma , respectively, we write

FIG. 1. Ferromagnetic order parameterM f and Lyapunov expo-
nents l f

s and l f
n in a continuous transition. We have take

r 521.0, V/2p50.1, andu50.55. h0
c indicates the amplitude o

the critical field.
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Ma, f5
1

2pE0

2p

ma, fdj. ~11!

In order to analyze the stability of the symmetric a
nonsymmetric solutions we have calculated the correspo
ing Lyapunov exponents@2#, which can be obtained by th
following equation:

Vla, f5
1

2pE0

2p]Ga, f

]ma, f
dj, ~12!

where the functionsGa, f are obtained as one-half of the di
ference or sum of the right-hand sides of Eqs.~6! and ~7!,
respectively.

In the following we present the main results of this wor
In Fig. 1 we exhibit for the ferromagnetic case, wi
r 521.0, and for the valuesu50.55 andV/2p50.1, the
dynamical ferromagnetic order parameterM f as a function
of the amplitude of the oscillating magnetic field. For th
selected set of parameters we see thatM f goes continuously
to zero at the critical value of the fieldh0

c . In the same figure
we also exhibit the behavior of the corresponding symme
cal, l f

s , and of the nonsymmetrical,l f
n , Lyapunov expo-

nents as a function of the amplitude of the field. In this ca

FIG. 2. The same legend as in Fig. 1, except that the trans
is discontinuous, and we have a coexistence of the paramag
and ferromagnetic phases between the zeros of the Lyapunov e
nents.

FIG. 3. Dynamical phase diagram in the plane amplitude of
oscillating field versus reduced temperature forr 521.0 and
V/2p50.1. P and F represent the paramagnetic and ferroma
netic phases, respectively, while theP1F region indicates the co
existence between theP andF phases.u t gives the temperature o
the dynamical tricritical point.
d-

.

i-

e

of continuous transition we see that both exponents are
ways negative, and go to zero at exactly the same valu
the critical field. In Fig. 2, and still forr 521.0, u50.40,
andV/2p50.1, we observe a different behavior of the ord
parameter. Now the transition is discontinuous, and the c
responding Lyapunov exponents become zero at diffe
values of the field. This characterizes a region of the co
istence of the symmetrical and nonsymmetrical solutio
Physically, for the values of the field in between the zeros
the Lyapunov exponents we have a coexistence of the fe
magnetic and paramagnetic phases. In Fig. 3 we presen
complete phase diagram in the plane amplitude of the fi
versus reduced temperature. Forr and V we use the same
parameters of Figs. 1 and 2. Foru.u t the transition between
the ferromagnetic and paramagnetic phases is continu
like that in Fig. 1, while foru,u t we have a coexistence o
these two phases, as shown in Fig. 2. The temperatureu t is
the so-called dynamical tricritical temperature. The pha
diagram we have obtained for this model in the dynami
pair approximation is similar to the one obtained by Tom´
and de Oliveira@2# in the mean-field approach, and co
firmed by Monte Carlo simulations@13,14#.

Now we turn to the most interesting case of competiti
between the exchange couplings. In this case the model
proper layered metamagnetic model. Here, the dynamica
der parameter of interest isMa , which accounts for the an

n
tic

po-

e

-

FIG. 4. Dynamical phase diagram in the plane reduced am
tude of the oscillating field versus reduced temperature forr 51.0
and V/2p50.1. P and AF represent the paramagnetic and an
ferromagnetic phases, respectively, while theP1AF region indi-
cates the coexistence between theP and AF phases.u t gives the
temperature of the dynamical tricritical point.

FIG. 5. The same legend as in Fig. 4, but herer 510.0. The
tricritical point disappears and we have only continuous transiti
between the AF andP phases.
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tiferromagnetic coupling between the layers of the mod
For instance, in Fig. 4 we show the complete dynami
phase diagram forr 51.0 andV/2p50.1. For these value
the diagram is topologically similar to the pure ferroma
netic case, Fig. 3, except that the ordered phase is the
ferromagnetic one. For the construction of this phase d
gram we have calculated all the Lyapunov exponents for
symmetrical and nonsymmetrical solutions. Although the
solute values ofr are the same as in Figs. 3 and 4, we o
serve that the temperature of the dynamical tricritical po
u t is slightly different in the metamagnetic model. This
because in the pair approximation we are using, the corr
tion functions r h1 and r h2 for the sublattices 1 and 2 ar
distinct. In Fig. 5, we taker 510.0 andV/2p50.1. For this
value of the competition parameter the dynamical tricriti
point disappears. This is expected because as we increas
values ofr the model becomes almost antiferromagnetic
nature, and in this case the transition line is continuous@3#.
In Fig. 6 we show the plot of the amplitude of the critic
field for the limits of stability of the antiferromagnetic phas
curve 1, and of the paramagnetic phase, curve 2, at
temperature, and forV/2p50.1, as a function ofr. It is clear
that forr .5.8, there is no longer coexistence of phases, e
at zero temperature, and we observe only a continuous p
transition between the antiferromagnetic and paramagn
phases. We also observe that whenr goes to zero, the layer
become uncoupled, and we have only a collection of o
dimensional ferromagnetic Ising models. The amplitude
the critical oscillating field ish0

c52.0J1 , and the limits of
stability of the antiferromagnetic and paramagnetic pha

FIG. 6. Critical amplitude of the oscillating field as a function
the ratior, at zero temperature. Curves 1 and 2 give the limits
stability of the AF andP phases, respectively. HereV/2p50.1.
l

v

nd
l.
l

-
ti-
-
e
-
-
t

a-

l
the

,
ro

n
se

tic

-
f

s

coincide. The behavior shown in the latter figure depends
the frequency of the field. For instance, we show in Fig. 7
plot similar to that of Fig. 6, except that nowV/2p50.01. In
this limit the field is almost static, and we always have
phase coexistence at zero temperature for any valuer
Þ0. The difference between the limits of stability of th
critical fields remains constant for very small values of t
frequency of the external oscillating field.

In summary, we have studied the dynamical behavior
an Ising model in a square lattice, with competing horizon
and vertical exchange interactions, in the presence of a p
odic oscillating magnetic field. We have found the stationa
states of the model through the master equation approach
within the dynamical pair approximation. The phase diagr
of the model in the plane amplitude of the critical field ve
sus temperature was determined for the ferromagnetic
layered metamagnetic models, for different values of the
quency of the field and of the competition parameter. T
stability of the continuous and discontinuous transitions w
analyzed in terms of the appropriate Lyapunov exponents
the symmetrical and nonsymmetrical solutions. We ha
seen that for the metamagnetic model the dynamical tric
cal point disappears for large values of the competition
rameter. On the other hand, for very slowly varying field
the difference between the amplitudes of the critical fie
for the limits of stability of the antiferromagnetic and par
magnetic phases is constant for almost all values of the c
petition parameter.

The work was supported by the Brazilian Agenci
CNPq, CAPES, and FINEP.

f
FIG. 7. The same legend as in Fig. 6 but now we are usin

small value for the frequencyV/2p50.01.
tt.
@1# H. E. Stanley,Introduction to Phase Transition and Critica
Phenomena~Clarendon Press, Oxford, 1971!.

@2# T. Toméand M. J. de Oliveira, Phys. Rev. A41, 4251~1990!.
@3# G. Hoenicke, P. C. T. D’Ajello, and W. Figueiredo, Phys. Re

B 53, 9221~1996!.
@4# N. G. Van Kampen,Stochastic Processes in Physics a

Chemistry~North-Holland, Amsterdam, 1981!.
@5# R. J. Glauber, J. Math. Phys.4, 294 ~1963!.
@6# H. Mamada and F. Takano, J. Phys. Soc. Jpn.25, 675 ~1968!.
@7# R. Dickman, Phys. Lett. A122, 463 ~1987!.
@8# M. Santos and W. Figueiredo, Phys. Rev. B58, 9321~1998!.
.

@9# J. M. Kincaid and E. G. D. Cohen, Phys. Rep., Phys. Le
22C, 57 ~1975!.

@10# E. Stryjewski and N. Giordano, Adv. Phys.26, 487 ~1977!.
@11# H. J. Herrmann and D. P. Landau, Phys. Rev. B48, 239

~1993!.
@12# M. Santos and W. Figueiredo, Phys. Rev. B55, 11 353

~1997!.
@13# M. Acharyya and B. K. Chakrabarti, Physica A192, 471

~1993!.
@14# M. Acharyya and B. K. Chakrabarti, Phys. Rev. B52, 6550

~1995!.


