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Dynamical phase diagram of a metamagnetic model subject to an oscillating magnetic field
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We investigated the dynamical behavior of an Ising model in a square lattice subject to a time-dependent
external magnetic field. In our model the exchange coupling between first neighboring spins in the horizontal
direction is different from that of the vertical direction. We have employed the master equation approach for
the Glauber stochastic process and used the dynamical pair approximation in order to decouple the hierarchy
of equations. We have found the stationary phase diagram for this model in the plane amplitude of the
oscillating field versus temperature, for different values of the frequency of the external field and of the ratio
between the vertical and the horizontal couplings. Depending on these values, the phase diagram can exhibit
the ferromagnetic, paramagnetic, and antiferromagnetic phases. The transition between these phases can be
continuous or discontinuous, and the model may also display a tricritical behg&id63-651X99)01504-4

PACS numbd(s): 64.10+h, 64.60.Ht

The structure of the phase diagram of a ferromagnetibetween the horizontal and vertical couplings, the topology
Ising system is completely modified when an external magof the phase diagram exhibits strong dependence on the val-
netic field is applied to the system. In fact, when the mag-ues ofr >0, that is, for small values af this metamagnetic
netic field is zero the ferromagnetic Ising model in two di- model displays continuous and discontinuous phase transi-
mensions undergoes a continuous phase transition betwe&fins, while for large values af only continuous transitions
the ordered and disordered phases at a well defined criticare possible.
temperaturg1]. However, the application of a uniform and ~ Let us start with the following Hamiltonian model:
constant magnetic field to the system destroys the phase tran-
sition and only one phase becomes stable. On the other hand, H=—2 o [3101415—Jp01 11 HH(D)], (1)
if the magnetic field is sinusoidally varying in time the sys- i ' ’
tem again exhibits a phase transition between the ferromag- i ,
netic and paramagnetic phask®. Besides, the transition Whereo;;==1 are the spin variables ari(t)=H, coswt
can be continuous or discontinuous depending on the valud$ the magnetic field which is periodically varying in time
of the temperature and of the amplitude of the oscillatingith frequencyw and amplitudeH,. If this spin system is
field. The point connecting the continuous and discontinuou®Ut in contact with a heat reservoir at temperafliréne spin
lines is known as the dynamical tricritical point. \{arlablesm,j can .b_e conS|dereq as stochastic fun(_:tlons of

However, if the spins of the system are coupled by arfime. The probabilityP(o,t) of fmdmg the_ sy_stem in the
antiferromagnetic exchange interaction, the phase transitiorat€o= (o, . .. ,0jj, ... ,onN) attimetis given by the
are always continuous for both static and varying magnetigolution of the following master equatidd]:
fields[3]. In fact, this behavior is observed for small values
of the competition between the frequencies of the field and—p(g,t)= _E W j(g)p(g'tHE m j(Ui,i)p(Ui,J,t),
that of spin flipping in the heat bath. Only at very high fre- dt o N
guencies of the field does the system remain in a stationary 2
3ntn‘erromagnet|c state, that is, the transition to the d'sorWhere w; (o) is the transition probability, per unit time,

ered state does not ocur. . . from the stater to the stateo’! when we flip only the spin
e el e (). Therelre I h systen evoles accoang o
into accogmt that the exch%ngeginteractioh between firgthe.3 Qlauber presgriptio[ﬁ], t_he transition_pro_bability, per

) ; . L : unit time, of flipping the spin at the position,{) of the
neighboring spins depends on the direction of the given COUr , .

; S . .~ .~ “lattice at timet can be given by
pling. In our model the coupling in the horizontal direction
has the valuel; while its value in the vertical direction is 1
taken as),. Depending on the values of the ratie-J,/J; wij(0)= 57
we have obtained, through the master equation formalism
and dynamical pair approximation, continuous and first-order
phase transitions. The phase diagram that we have found in —Ja(0jj—1t o)t H(t)]”. (€
this pair approximation for the ferromagnetic case<Q) is
very similar to the mean-field one found by Toraed de  where kg is Boltzmann's constant and is the relaxation
Oliveira[2]. On the other hand, when there is a competitiontime for a single spin.

From the master equation it is possible to show that the
average value of any functiay(o) can be calculated by the
*Electronic address: wagner@fisica.ufsc.br following equation:

1
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d{g(o)) sublatticea surrounded by its first neighbors, the approxi-

T IZJ ([g(a" ) —g(o)Iw; (). (4)  mated expression for the probability of this cluster is written
' as
Wheng(o) = o ; the equation of motion for the magnetiza- P (0..0) P..(00,0)
tion depends on the correlation function between nearest- CHERY | et | hal7ar T (5)
neighbor pairs of spins. However, if we write the equation of j Pa(oa) i Pa(oa)

motion for the pair correlation function, new correlations of here P _11 is th bability of th ,
higher order also appear. In order to decouple this set of/N€réPa(oa)=2(1+maoy) is the probability of the spin
to assume the valuer,. P,(o,,0p)=7(1+mo,

equations we have used the dynamical pair approximatioffa _ - - )
[6,7]. In this way, we obtain a closed set of nonlinear equa-+ m2"b+rq0a0b) is the pair probablllty for the spimr,, on
tions which give us the magnetization and the pair correlatn® sublattice 1, andy, on the sublattice 2, to assume the
tion functions of interest. Although this procedure is not use-Yalueso, anday, respectively. Analog?usly, we also define
ful for finding the critical exponents, because they are ofthe pair probabilities Ppi(cq,0p)=7(1+mjo,+moy
mean-field type, it improves the mean-field results concern= hia0) for pairs of first neighbor spinso(, o) on the
ing the determination of the phase diagram, even though the2me sublattice Defining the following auxiliary quantities:
expressions are more complex than the corresponding mean- 1

field ones. For instance, in a recent wg&{ we have em- X10==(1+my ),

ployed this approximation to find the phase diagram of a © 2 ’

layered metamagnetic model in a constant field. We have
shown that there is no evidence for the decomposition of the
tricritical point into the critical and bicritical endpoints as
predicted by the mean-field calculatiof®y. The absence of
these special points is in agreement with experimental results
[10] and with Monte Carlo simulations performed in a re-
lated metamagnetic modgl1]. When the parameter<O,
ferromagnetic case, it is necessary to consider only three 1

different equations of motion: one for the evolution of the Uy o=7(1%£2my+rp),
magnetization and two others for the evolution of the vertical

and horizontal pair correlation functions. In the case of com- 1

petition r>0, we consider a layered metamagnetic model, t1,2=Z(1t2m2+rh2),
where we divide the square lattice into two alternating sub-

lattices 1 and 2 with magnetizatioms; and m,, respec- 1

tively. Moreover, we need to define three different types of zi==(1+my+my+r,),
correlation functions: the intersublattice correlation function 4

r,, that represents the correlation between nearest-neighbor
spins in the vertical direction, and the intrasublattice corre-
lation functionsry,;, which account for the horizontal corre-
lation function in each sublattice=1,2. In order to evaluate

the mean value on the right-hand side of Et).we write, in 1

the pair approximation, the weighted probability as the prod- qLZ:Z(l_ Mhina),

uct of the probabilities of pairs of spins belonging to a given

cluster of spins. Then, taking, as a central spin on the we can write the equations of motion of interest:

1
Y1255 (1—=my ),

1
Ul,zzz(li my+=my—r,),

1
Wl:Z(l_ml_m2+ru)y

2.2 22 2 2 2 2
d uizy O3 UiZiv1  QiWivp QiU1z3  QqUpv;3 QiU1v1Z3  UpQivoW;
Qd—ml——m1+ Yi| 03 T3 Yol =3 T3 | t2vs|\—m3—t—3 | t4v 3+ 3
3 X1 Y1 X1 Y1 X1 1 X1 Y1
2.2 2.2 22 2 2 2 2 2 2
12y Uzvp Upivy  QWwy Uv1Q:  QiUpwy q1Z1v1  UoWiv2p
+y5\—mt—=3 | tvel 3t —=3 |2y —m—F+——=— | T2y —m—F+——=—
X1 Y1 X1 Y1 X1 Yi X1 Yi
2.2 2 2
N qivs + Uzwl) ®)
Yo| /03 3 |
X1 Y1
2.2 22 2 2 2 2
Q d m Mot t121+ Osv1 (tlleZ QaW1vg <QZt121 Q2t201> (Q2t10221+t2Q201W1)
TeM= =M™ Y| 737 T ——3— Y2\ —o3 3 D] < T A 4 3 3
dé X5 2 X3 Yi X3 Y5 X5 \Z
2.2 .22 22 2 2 2 2 2 2 22 .2 2
N QZ21+t2U1) (t102+QZW1) <t1UZQ2 Q2t2W1) <QZ2102 towivg <QZU2 tZWl)
Y5\ 03 T3 | T Vel 3 T 3 Y7 3 3 Y8 3 3 Yo 3 3 |
X3 Y2 X2 Y2 X2 Y2 X2 Y2 X2 Y2
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X1 Y1 X1 Y1
2.2 22 2 2 2,2 42 2 2.2 2,2
Q d = — 2r iyt 2 1 Q2vl>+ y t10221+Q201W1> y Q2zl+tzvl) y (tlvz+Q2W1>
Th2= —2ln G B R 2 2 3 3| Y5\ 3 T 3 6| w3 3
dé X3 Y2 X2 Y2 X2 Y2 X2 Y2
2 2 2 2 2,2
4y 02Z102 t201W1> , (Q2vz Wltz) )
—4%Ys 3 T3 | T4Y| T3 |
X2 Y2 X2 Y2
22 22 .22 (22 2 2 2 2
Q d ; or 4 uizi Qs tZp  daui N UiQ1Z;  QuUpvy 13071 Q2t201>
TJelv™ 7 Y1l 3 3 -3 T3 V3 3 3 3 3
d¢ '’ 0 X1 Y1 X2 Y5 X1 Y1 X2 Y>
22 22 2.2 .22 22 202 .22 2.2
y ((hzl Uzvz Q27 tZUl) y (ulvl gqiwi  tyvs Q2W1)
5| o3 3 3 T 3| Vel 3 3 T3 3
X1 Y1 X2 Y2 X1 Y1 X2 Y2
2 2 2 2 22 202 22 .2 02

(U1Q1U1 QiuaWi 11005 Qotaw) ((hvl Uawi  Qav3 tZWl) (10

— &Y 3 3 3 3 Y9 3 3 3 3 |

X1 Y1 X2 Y2 X1 Y1 X2 Y2
|
where around a given nonzero mean value or it becomes zero. But

. in any case the ferromagnetic order parametgralways
yio=tanh —[+=2+2r+h(&)];, oscillates around a zero mean value. When the value,d$
0 identical to zero anytime, the sublattice magnetizations

andm, are the same time functions. In this case the solution

1 is called symmetric or paramagnetic. It occurs for high val-

72,8:tam—{§[i2+h(§)]}' ues of both temperature and amplitude of oscillating field.
For lower values of the amplitude,, the symmetric solu-

1 tion becomes unstable and a new behavior is observed. The
Y3.7= tan”{g[i 2r+ h(f)]] : solutionm, oscillates, and its mean value during a period of
oscillation of the magnetic field is different from zero. This
h(&) is th so—cal!ed antifer_romagnetic or nonsymmetric solution.
y4:tanl'(—), It is interesting to define a dynamical order parameter for

0 systems subject to external periodic forces, as being the

mean value of their corresponding instantaneous values over
a cycle of oscillation. In this way, for the dynamical ferro-
magnetic and antiferromagnetic order parametdrs and
M,, respectively, we write
We have also defined the following reduced variablés:
:kBT/‘]ll r:\]zlJl, h:ho COSg, Q:WT, §:Wt, and ho
=Hgy/J;. In order to characterize the ferromagnetic and an-
tiferromagnetic states we have defined the order parameters
m; = (my;+m,)/2 andm,= (m;—m,)/2, respectively. M,
We have shown that fdd,=0, the phase diagram of this 05 1
model in the plane temperature vergusxhibits the ferro-
magnetic, antiferromagnetic, and paramagnetic phpk#s
On the other hand, for a constant magnetic field and, 0.0
the phase diagram in the planbkg(#) displays a tricritical N
point [8] for any value of the competing ratio
Here we are interested in the behavior of the model when 0.5 e > ;30 = 65
the magnetic fieldH is varying sinusoidally in time. In this ' : 0 '
case, we look for the nonequilibrium stationary states of the °
system. The set of Eq$6)—(10) is solved numerically by FIG. 1. Ferromagnetic order paramekéf and Lyapunov expo-
using the Runge-Kutta method of fourth order for fixed val-nents \{ and A\ in a continuous transition. We have taken
ues of#, r>0, and(). Depending on the value assumed byr=—1.0, Q/27=0.1, andd=0.55. h§ indicates the amplitude of
hg, the antiferromagnetic order parameteg can oscillate the critical field.

1
75‘6:tan"{5[12i 2r+h(§)]] .

1.0 T
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o . FIG. 4. Dynamical phase diagram in the plane reduced ampli-
~ FIG. 2. The same legend as in Fig. 1, except that the transitioR,qe of the oscillating field versus reduced temperature fot..0
is dlscontlnuous,_ and we have a coexistence of the paramagnetit,q/2-=01. P and AF represent the paramagnetic and anti-
and ferromagnetic phases between the zeros of the Lyapunov eXPRsrromagnetic phases, respectively, while e AF region indi-
nents. cates the coexistence between fh@nd AF phasesd, gives the
temperature of the dynamical tricritical point.
1 27
Mai=5— f m, (d. (11) . "
mJo of continuous transition we see that both exponents are al-
ways hegative, and go to zero at exactly the same value of
In order to analyze the stability of the symmetric andthe critical field. In Fig. 2, and still for=—1.0, §=0.40,
nonsymmetric solutions we have calculated the correspondand()/27=0.1, we observe a different behavior of the order
ing Lyapunov exponentf2], which can be obtained by the parameter. Now the transition is discontinuous, and the cor-
following equation: responding Lyapunov exponents become zero at different
values of the field. This characterizes a region of the coex-
ax :ijz’TﬂGa,fdf (12) istence of the symmetrical and nonsymmetrical solutions.
At 2wl amys > Physically, for the values of the field in between the zeros of
the Lyapunov exponents we have a coexistence of the ferro-
where the functionss, ; are obtained as one-half of the dif- magnetic and paramagnetic phases. In Fig. 3 we present the
ference or sum of the right-hand sides of E(®. and (7), complete phase diagram in the plane amplitude of the field
respectively. versus reduced temperature. Foand () we use the same
In the following we present the main results of this work. parameters of Figs. 1 and 2. F@¥ 6, the transition between
In Fig. 1 we exhibit for the ferromagnetic case, with the ferromagnetic and paramagnetic phases is continuous,
r=-—1.0, and for the value®=0.55 andQ/27=0.1, the like that in Fig. 1, while for6< 6, we have a coexistence of
dynamical ferromagnetic order parameMs as a function these two phases, as shown in Fig. 2. The temperaiuise
of the amplitude of the oscillating magnetic field. For this the so-called dynamical tricritical temperature. The phase
selected set of parameters we see Matgoes continuously diagram we have obtained for this model in the dynamical
to zero at the critical value of the fielf. In the same figure ~pair approximation is similar to the one obtained by Tome
we also exhibit the behavior of the corresponding symmetriand de Oliveira[2] in the mean-field approach, and con-
cal, A, and of the nonsymmetrica\", Lyapunov expo- firmed by Monte Carlo simulationsi3,14. N
nents as a function of the amplitude of the field. In this case NOW we turn to the most interesting case of competition
between the exchange couplings. In this case the model is a

4.0 . . proper layered metamagnetic model. Here, the dynamical or-
PyF der parameter of interest M., which accounts for the an-
3.0
30.0 T T
°e 2.0
20.0 .
1.0 o
o
0.0 10.0 E
00 9§ 10 20 3.0
0
FIG. 3. Dynamical phase diagram in the plane amplitude of the o.o00 5'0 1(; 5 5.0
oscillating field versus reduced temperature for—1.0 and ) ’ o ) ’
Q/27=0.1. P andF represent the paramagnetic and ferromag-
netic phases, respectively, while tRe-F region indicates the co- FIG. 5. The same legend as in Fig. 4, but herel0.0. The

existence between thHe andF phases¥, gives the temperature of ftricritical point disappears and we have only continuous transitions
the dynamical tricritical point. between the AF an@ phases.
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FIG. 6. Critical amplitude of the oscillating field as a function of FIG. 7. The same legend as in Fig. 6 but now we are using a
the ratior, at zero temperature. Curves 1 and 2 give the limits ofsmall value for the frequencé§2/27=0.01.
stability of the AF andP phases, respectively. Hef®/27=0.1.

coincide. The behavior shown in the latter figure depends on
he frequency of the field. For instance, we show in Fig. 7 a
lot similar to that of Fig. 6, except that nd/27=0.01. In

this limit the field is almost static, and we always have a

the diagram is topologically similar to the pure ferromag- hase coexistence at zero temperature for anv value of
netic case, Fig. 3, except that the ordered phase is the anti: . peratt Y
#0. The difference between the limits of stability of the

ferromagnetic one. For the construction of this phase dia- . ) ;

gram we have calculated all the Lyapunov exponents for th ritical fields remains constant fqr very small values of the
symmetrical and nonsymmetrical solutions. Although the ablrequency of the external osc[llatlng field. : .
solute values of are the same as in Figs. 3 and 4, we ob- In_summary,_we have StUd'.ed th? dy”am'c?" beha_wor of
serve that the temperature of the dynamical tricritical point2" Ising _model In a square Iatt!ce, W.'th competing horlzontal_
6, is slightly different in the metamagnetic model. This is and vertical exchange interactions, in the presence of a peri-

because in the pair approximation we are using, the CorrelaQdic oscillating magnetic field. We have founq the stationary
tion functionsry, and ry, for the sublattices 1 and 2 are states of the model through the master equation approach and
distinct. In Fig é we tak2e= 10.0 andQ/2m—0.1. For this _ Within the dynamical pair approximation. The phase diagram

value of the competition parameter the dynamical tricriticalOf the model in the plane amplitude of the critical field ver-

point disappears. This is expected because as we increase A Zrt:(;nﬁ]eerg{:s r\:veatisc (;féz:argn%jr (fj(i)frfetrr:; Ji;ﬁg‘:%??ﬁ'ec f?g_d
values ofr the model becomes almost antiferromagnetic in Y 9 ’

nature, and in this case the transition line is continu@Js quency of the fieId. and of the pompe_tition param_gter. The
In Fig ’6 we show the plot of the amplitude of the critical stability of the continuous and discontinuous transitions was
field for the limits of stability of the antiferromagnetic phase, analyzed in terms of the appropriate Lyapunov exponents for

curve 1, and of the paramagnetic phase, curve 2, at zeffll SETETE B TRl PG TR DF R
temperature, and fdR/27r=0.1, as a function of. It is clear 9 y

that forr>5.8, there is no longer coexistence of phases, evef’ial point disappears for large values of the competition pa-
r%meter. On the other hand, for very slowly varying fields,

at zero temperature, and we observe only a continuous phaﬁwe difference between the amplitudes of the critical fields

transition between the antiferromagnetic and paramagnetilpor the limits of stability of the antiferromagnetic and para-
phases. We also observe that whiegpes to zero, the layers . . y 9 P
magnetic phases is constant for almost all values of the com-

become uncoupled, and we have only a collection of one- 2.

dimensional ferromagnetic Ising models. The amplitude ofetition parameter.

the critical oscillating field ishg=2.0J;, and the limits of The work was supported by the Brazilian Agencies
stability of the antiferromagnetic and paramagnetic phase€NPq, CAPES, and FINEP.

tiferromagnetic coupling between the layers of the model
For instance, in Fig. 4 we show the complete dynamical
phase diagram for=1.0 and(}/27=0.1. For these values
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